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The effect of surfactant on the breakup of a viscous filament, initially at rest,
surrounded by another viscous fluid is studied using linear stability analysis. The role
of the surfactant is characterized by the elasticity number – a high elasticity number
implies that surfactant is important. As expected, the surfactant slows the growth
rate of disturbances. The influence of surfactant on the dominant wavenumber is
less trivial. In the Stokes regime, the dominant wavenumber for most viscosity ratios
increases with the elasticity number; for filament to matrix viscosity ratios ranging
from about 0.03 to 0.4, the dominant wavenumber decreases when the elasticity
number increases. Interestingly, a surfactant does not affect the stability of a filament
when the surface tension (or Reynolds) number is very large.

1. Introduction
Filaments of liquids are common in engineering processes. These filaments can

be formed by a jet impinging into another liquid, or, as frequently occurs in the
food industry and in polymer blending, by stretching a droplet. Capillary forces
due to interfacial tension make filaments unstable and cause breakup into smaller
droplets. In some applications, it is desirable to stabilize a filament for as long
as possible; in others, it is only necessary to realize or control the size of the
droplets resulting from breakup. For instance, the size and structure of droplets, or
morphology, in a blend affects the final properties. Increasingly, surfactants are added
to dispersions, and compatiblizers, acting as surfactants, are added to high-molecular-
weight (bio)polymer blends to control morphology. Still, the understanding of the
role of surfactants during breakup of filaments is incomplete.

Lord Rayleigh (1892) first studied the stability of an infinitely long cylindrical fluid
filament in an inviscid fluid. Years later, Tomotika (1935) considered the breakup
of a viscous cylindrical fluid thread in another quiescent viscous fluid. Many studies
have followed these classic works, but few have considered how surfactants affect this
problem. Whitaker (1976) was one of the first to formulate the problem accounting
for both interfacial tension gradients and interfacial viscosity due to the presence of
surface-active material in a fluid filament surrounded by a gas. Interestingly, Whitaker
noted that the problem is very complex and not treated correctly by previous authors
– his analysis also had a sign error (see equation (60) in Whitaker 1976). More
recently, Hajiloo, Ramamohan & Slattery (1987) considered the effect of interfacial
viscosity on the breakup of filaments embedded in another viscous liquid; their work
did not consider local fluctuations in interfacial tension. On the other hand, Palierne &
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Lequeux (1991) studied the effects of surface elasticity on the breakup of a viscoelastic
thread surrounded by a viscoelastic fluid for low Reynolds numbers.

The flow during the breakup of a thread is related to surfactant concentration which
determines the interfacial tension driving the flow. Likewise, surfactant concentration
is affected by the flow which convects the surfactant. The coupling of the surfactant
concentration and the underlying flow creates interfacial tension gradients which
result in an interesting range of phenomena, termed Marangoni effects (Edwards,
Brenner & Wasan 1991). In fact, flux of surfactant through the interface of a filament
can lead to an instability in addition to capillary instabilities (Burkholder & Berg
1974). Here, we are however interested in an interface initially in equilibrium with
its surrounding phases. In this case, Marangoni effects can give elastic properties
to a fluid–fluid interface, similar to those considered by Palierne & Lequeux (1991).
Detailed analysis of the problem, however, requires coupling the mass and momentum
transport equations not done by these authors.

Some numerical work focuses on the effect of surfactant on the breakup of droplets.
Stone & Leal (1990) study the deformation and breakup of droplets covered with an
insoluble surfactant at low capillary numbers. Milliken, Stone & Leal (1993) consider
the formation and breakup of long slender drops with an insoluble surfactant on the
surface, while Milliken & Leal (1994) study how solubility of the surfactant influences
the problem. These studies illustrate much of the important physics of the problem.
Surfactants tend to stabilize the droplet, i.e. disturbances grow more slowly on drops
with surfactants. This stabilizing effect results from the elasticity caused by Marangoni
effects, and the lower average interfacial tension due to the presence of surfactant.
Nevertheless, the understanding of this problem can still benefit from further analysis
considering very long filaments which may have a wide range of material parameters
and are not limited to the Stokes regime.

In this paper, we study the effect of surfactant on the breakup of a viscous filament
surrounded by another viscous fluid, termed the matrix, by means of linear stability
analysis. The system is initially in equilibrium. The surfactant is soluble and diffuses in
both the matrix and the filament. Surface diffusion of the surfactant is also considered.
The only role of the surfactant is to decrease the interfacial tension. Surface viscosity
is not considered. The interface has an elastic nature, but, unlike the work of Palierne
& Lequeux (1991), it results only from local fluctuations in the interfacial tension due
to the transport of surfactant. The growth rate and wavelength of the fastest growing
disturbance are of particular interest, as they determine the time until breakup and
the size of resulting droplets, respectively.

The paper is organized as follows. We first describe the relationship between
interfacial tension and surface-active agents. This is followed by the modelling of
the flow produced by breakup of viscous threads and the convection and diffusion
of surfactant. We then perform a linear stability analysis of a viscous fluid filament
surrounded by a viscous matrix, accounting for surfactant. Afterwards, in the results
and discussion section, we examine the stability of the thread for various limiting cases.
The final section summarizes the important results. A table of relevant dimensionless
parameters is provided in § 3 to aid the reader.

2. Surfactants and interfacial tension
Before proceeding with the modelling, it is appropriate to discuss the relationship

between interfacial tension and surfactant concentration. Interfacial tension, as with
pressure, the three-dimensional analogue of interfacial tension, has been described by
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various equations of state. One such equation of state can be derived by assuming that
surface adsorption can be described by a Frumkin isotherm and that the surfactant
solution is ideal (Lin, McKeigue & Maldarelli 1990), yielding

σ = σc + RgTγ∞[ln (1− γ/γ∞)− 1
2
k(γ/γ∞)2]. (2.1)

Here, σ is the interfacial tension, σc is the interfacial tension of a ‘clean’ surface, γ is
the surface concentration of surfactant, γ∞ is the maximum surfactant concentration
of a unimolecular film on the surface, k is a material parameter, and Rg and T are
the gas constant and temperature, respectively. For dilute concentrations, interfacial
tension is related to surfactant concentration by the linear relationship

σ = σc − γRgT . (2.2)

The above equations, and others like them, can for small perturbations from the
equilibrium surfactant concentration be approximated as

σ = σ0 − E0

(
γ − γ0

γ0

)
. (2.3)

Here, the subscript 0 denotes the value at the equilibrium or ‘undisturbed’ surfactant
concentration, and E0, the Gibbs elasticity, is

E0 = − ∂σ

∂ ln γ

∣∣∣∣
γ=γ0

. (2.4)

The nomenclature becomes apparent when considering the definition of surface
dilatational modulus (Lucassen & van den Tempel 1972),

Ks ≡ dσ

d ln S , (2.5)

where S is the area of the interface. When mass transfer into and out of the interface
and surface diffusion are negligible, γ is inversely proportional to S, and Ks = E0.
The mass transfer of surfactant and the Gibbs elasticity dictate the form of the surface
dilatational modulus due to surfactant. There is no corresponding shear modulus in
the interface due to Marangoni effects.

3. Physical model
Consider an initially quiescent infinitely long cylindrical filament of viscous fluid

embedded in a viscous matrix. On the interface between the fluids is a surfactant
which might be soluble in one or both of the fluids. Capillary waves form on the
interface between the fluids. The underlying flow produced by the waves convects
the surfactant on the interface and in the bulk, causing interfacial tension gradients
which result from a non-uniform surfactant concentration on the interface. These
interfacial tension gradients lead to an extra ‘elastic’ force which slows the formation
of the waves. Still, the waves eventually break the filament.

It is convenient to scale the problem such that inertia and viscous terms balance.
To this effect, we define the following dimensionless variables:

v =
ρRv′

µ
, v̂ =

ρRv̂′

µ
, P = P ′ρ

(
R

µ

)2

, P̂ = P̂ ′ρ
(
R

µ

)2

,

r =
r′

R
, z =

z′

R
, c =

c′

c0

, ĉ =
ĉ′

c0

, Γ =
γ

Kc0

, t =
µt′

ρR2
.

, (3.1)
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Figure 1. Definitions of the important parameters of a filament of viscous fluid embedded in
another viscous fluid.

Here, R is the initial radius of the filament, K is the ratio of interfacial concentration
to bulk concentration in the thread of surfactant at equilibrium, and µ and ρ are
the viscosity and density of the fluid inside the filament, respectively. Except in the
case of interfacial concentration of surfactant, the prime (′) denotes the variable with
dimensions and that without the prime, the dimensionless parameter. The variables,
with a hat signifying a variable in the matrix, are defined as follows: v is the velocity
vector; P is the modified pressure – the sum of pressure and potential due to gravity
(Hajiloo et al. 1987); c and Γ are the surfactant concentration in the bulk and on the
interface, respectively; r and z are the radial and axial components of the cylindrical
coordinates (see figure 1), respectively; and, t is time. The equations governing
momentum and mass transfer will be written in terms of these dimensionless variables.

The flow in the filament and matrix, both incompressible Newtonian fluids, can be
described by the Navier–Stokes and continuity equations:

Dv

Dt
= −∇P + ∇2v, (3.2)

1

Nρ

Dv̂

Dt
= −∇P̂ +

1

Nµ

∇2v̂, (3.3)

∇ · v = 0 and ∇ · v̂ = 0. (3.4)

Here, D/Dt is the material derivative, Nρ is the ratio of the fluid density in the thread
to the fluid density in the matrix, and Nµ, termed the viscosity ratio, is the ratio
of viscosity inside the filament to that outside the filament. The Reynolds number
for the filament, defined as NRe ≡ ρUR/µ, where U is the characteristic velocity of
the system, quantifies the ratio of inertia to viscous forces. Scaling capillary pressure
with viscous terms gives the characteristic velocity U = σ0/µ. On the other hand,
scaling capillary pressure with (transient) inertia terms gives the characteristic velocity

U = (σ0/ρR)
1/2

. Therefore, we use Nσ ≡ ρσ0R/µ
2, termed the surface tension number,

to characterize the breakup process, and define the Reynolds number,

NRe =
Nσ

1 +N
1/2
σ

. (3.5)

This definition captures the limiting behaviour of the Reynolds number for high
and low surface tension numbers. We note that the characteristic velocity should
be determined by scaling capillary pressure with viscous (or inertia) terms in the
matrix when Nµ (or Nρ)� 1; however, the scalings presented earlier demonstrate the
connection between the surface tension number and the Reynolds number, and the
analysis is not influenced by the scaling. When the surface tension number approaches
zero, the left-hand side of (3.2), which accounts for inertia in the thread, becomes
negligible, and can be set to zero (see § 5).
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Assuming that the Bond number is

Bo ≡ ∆ρagR
2

σ
� 1, (3.6)

where ∆ρ is the density difference between the filament and the matrix, and ag is
the acceleration due to gravity, allows us to neglect gravity and consider initially
axisymmetric threads (Hajiloo et al. 1987). We further assume that axisymmetric
disturbances grow faster than asymmetric ones.

The boundary conditions on the thread and matrix are as follows. In the matrix,
far from the interface between the two fluids there is no flow, and, in the filament,
the flow at the centre is bounded. That is,

v̂ → 0 as r →∞, (3.7)

v is finite at r = 0. (3.8)

On the interface, the velocities of the fluids are equal:

v̂ = v at r = a(z, t) (3.9)

where a(z, t) is the dimensionless radial position of the interface at axial position z
and time t (for the undisturbed filament a = 1). The stresses on the interface of the
two fluids are related by

(T̂/Nµ − T ) · n = Nσ

(
σ

σ0

)
n(∇s · n)−Nσ∇s

(
σ

σ0

)
at r = a(z, t). (3.10)

Here, n is the unit normal to the interface directed into the matrix, T is the dimen-
sionless stress tensor, and ∇s denotes the surface gradient operator, ∇s = (I − nn) · ∇.
The local mean curvature of the surface is ∇s · n.

As demonstrated in (3.10), the flow is dependent on the interfacial tension, which is
a function of surfactant concentration (see § 2). For dilute concentrations of surfactant,
the convection and diffusion of surfactant in the fluids is governed by

Dc

Dt
=

1

NSc

∇2c, (3.11)

Dĉ

Dt
=

1

NDNSc

∇2ĉ. (3.12)

Here, ND is the ratio of the diffusivity of surfactant inside the thread to that inside
the matrix, and NSc, referred to as the Schmidt number, is defined as NSc ≡ µ/ρDγ ,
where Dγ is the diffusivity of surfactant inside the filament.

Assuming that transport between the interface and the bulk fluids is diffusion
limited – fast adsorption/desorption kinetics – the concentration of the surfactant in
the bulk fluids is in equilibrium with that in the interface. The relationships between
the concentrations of surfactant at the interface and in the interface are

Γ = c at r = a (3.13)

and

Γ = ĉ/NK at r = a, (3.14)

where NK = K/K̂ , with K and K̂ the equilibrium ratios of surfactant concentration in
the interface to surfactant in the filament and in the matrix, respectively. The isotherms
are linearized; that is, the values of K and K̂ are approximated as constants, which
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NEl ≡ ρE0R

µ2
Elasticity number NSur ≡ µ

ρDs

Surface diffusion number

NK ≡K/K̂ Equilibrium coefficient ratio Nµ ≡ µ/µ̂ Viscosity ratio

NL ≡ R/K Interface thickness number Nρ ≡ ρ/ρ̂ Density ratio

NRe ≡ Nσ

1 +N
1/2
σ

Reynolds number Nσ ≡ ρσ0R

µ2
Surface tension number

NSc ≡ µ

ρDγ

Schmidt number ND ≡Dγ/D̂γ Diffusivity ratio

Table 1. Dimensionless parameters.

is valid for small fluctuations about the equilibrium or dilute concentrations. We
further note that K is a length scale reflecting the ‘thickness’ of the interface, and is
referred to as the adsorption depth (Lin et al. 1990). Transport of the surfactant in
the interface is governed by (Stone & Leal 1990)

∂Γ

∂t
+ ∇s · (Γ vs) + Γ (∇s · n)(v · n) =

1

NSur

∇2
sΓ + jn. (3.15)

Here, vs is the dimensionless surface tangential velocity, jn is the dimensionless net flux
of surfactant into the interface, and NSur ≡ µ/ρDs, where Ds is the surface diffusivity
of surfactant. This surface transport equation consists of the flux into the interface,
the usual convection and diffusion terms, plus Γ (∇s · n)(v · n), which accounts for
interfacial expansion due to flow normal to the surface (Stone 1990).

The dimensionless parameters introduced in this section are defined in table 1.

4. Linear stability analysis
To further our understanding of breakup, we consider the response of a filament to

small disturbances. Disturbances to the interface are represented in terms of Fourier
components; the radial position of the interface is

a(z, t) = 1 + εeωt cos (kz). (4.1)

Here, ε is the amplitude of the disturbance, ω is the dimensionless growth rate of
the disturbances and k, the dimensionless wavenumber, is 2πR/λ, where λ is the
wavelength of the disturbance. The assumption of small disturbances to the interface,
incorporated by linear stability analysis, requires that the amplitude of the disturbance
is much less than the undisturbed radius of the thread, i.e. ε� 1.

We expand the velocity, pressure, and surface and bulk concentrations of surfactant
in orders of ε about the base, zero-order, solutions for an undisturbed static thread
at equilibrium, yielding

v = εv1 + O(ε2), (4.2)

P = P0 + εP1 + O(ε2), (4.3)

Γ = 1 + εΓ1 + O(ε2), (4.4)

c = 1 + εc1 + O(ε2). (4.5)

Similar expansions hold for the variables in the matrix. As the filament and the matrix
are initially quiescent, the zero-order solutions to surface and bulk concentrations
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of surfactant are the equilibrium concentrations, and the base solution to velocity is
zero. The base pressure difference between the phases is

P0 − P̂0 = Nσ (4.6)

which comes from the leading order of (3.10).
The problem is reformulated in terms of the streamfunction, ψ, defined by

v1r =
1

r

∂ψ

∂z
, v1z = −1

r

∂ψ

∂r
, (4.7)

where v1r and v1z are the radial and axial components of v1, respectively. This
streamfunction satisfies the continuity equation (3.4) to O(ε). The Navier–Stokes
equations, neglecting terms of O(ε2) and higher, are written as(

∂

∂t
− L2

)
L2ψ = 0 (4.8)

for the fluid inside the filament, and as(
1

Nρ

∂

∂t
− 1

Nµ

L2

)
L2ψ̂ = 0 (4.9)

for the fluid outside the filament, where

L2 ≡ ∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
. (4.10)

Note that pressure does not appear in the above streamfunction formulation of the
Navier–Stokes equation.

The streamfunction formulations of the Navier–Stokes equations with the boundary
condition (4.1) can be satisfied by

ψ = f(r)eωt cos (kz) and ψ̂ = f̂(r)eωt cos (kz). (4.11)

Substituting (4.11) into (4.8) and (4.9) yields

(ω − L̄2)L̄2f = 0 (4.12)

and
(ω/Nρ − L̄2/Nµ)L̄

2f̂ = 0 (4.13)
with

L̄2 ≡ d2

dr2
− 1

r

d

dr
− k2. (4.14)

These fourth-order ordinary differential equations are forms of the Orr–Sommerfeld
equation, with an analytical solution consisting of modified Bessel functions (To-
motika 1935). The solution to equation (4.12), noting that the flow is bounded at
r = 0, has the form

f = A1rI1(kr) + A2rI1(k1r) with k1 = (k2 + ω)1/2. (4.15)

Here, In is the modified Bessel function of the first kind, and order n, where n is an
integer, and A1 and A2 are constants to be evaluated with the boundary conditions.
Likewise, the solution to (4.13), noting that the fluid velocity approaches zero as
r →∞, has the form

f̂ = Â1rK1(kr) + Â2rK1(k2r) with k2 = (k2 + ωNµ/Nρ)
1/2. (4.16)

Here, Kn is the modified Bessel function of the second kind, and order n.
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To within O(ε2), the boundary conditions on the interface can be applied at r = 1.
We note that solving for higher than O(ε) terms requires expanding the boundary
conditions at the interface about r = 1. Accordingly, substituting the streamfunction
(4.7), the form for the streamfunction (4.11), and equations (4.15) and (4.16) into the
boundary condition (3.9) gives

A1I1(k) + A2I1(k1)− Â1K1(k)− Â2K1(k2) = 0 (4.17)

from the axial component of the velocities, and

A1kI0(k) + A2k1I0(k1) + Â1kK0(k) + Â2k2K0(k2) = 0 (4.18)

from the radial component of the velocities.
The stress balance on the interface, due to the surfactant, is relatively complex.

Equation (3.10) is expressed in terms of normal and tangential components. The O(ε)
balance of the normal stresses at the interface can be written

P1 − P̂1 +
2

Nµ

(
∂2ψ̂

∂r∂z
− ∂ψ̂

∂z

)
− 2

(
∂2ψ

∂r∂z
− ∂ψ

∂z

)
= −Nσ(1− k2)eωt cos (kz) +Nσ

(
σ1

σ0

)
(4.19)

in which σ1 is the O(ε) solution to interfacial tension, and the tangential stress balance
can be written

1

Nµ

(
∂ψ̂

∂r
− ∂2ψ̂

∂r2
+
∂2ψ̂

∂z2

)
−
(
∂ψ

∂r
− ∂2ψ

∂r2
+
∂2ψ

∂z2

)
= −Nσ

∂

∂z

(
σ1

σ0

)
. (4.20)

In order to properly define the interfacial tension in the above stress balances,
we determine the local concentration of surfactant on the interface. Substituting the
expansions (4.5) and (4.2) into (3.11) and (3.12) leads to the O(ε) expression

∂c1

∂t
=

1

NSc

∇2c1 (4.21)

for the fluid inside the thread, and

∂ĉ1

∂t
=

1

NDNSc

∇2ĉ1 (4.22)

for the fluid outside the thread in the matrix. Equations (4.1) and (4.11) indicate that
we should seek a solution to concentration in the thread with the form

c1 = g(r)eωt cos (kz). (4.23)

Substituting this relationship into (4.21) gives the ordinary differential equation

d2g

dr2
+

1

r

dg

dr
− (k2 + ωNSc)g = 0 (4.24)

for g(r). Since c1 is bound at r = 1, the concentration of the surfactant inside the
thread is

c1 = BI0(mr)e
ωt cos (kz) with m = (k2 + ωNSc)

1/2, (4.25)

where B is a constant. The concentration of the surfactant outside the thread can be
found, by the same approach as above with the constraint ĉ1 → 0 as r →∞, to be

ĉ1 = B̂K0(m̂r)e
ωt cos (kz) with m̂ = (k2 + ωNDNSc)

1/2. (4.26)
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The remaining boundary conditions for the surfactant concentration are

c1 = ĉ1/NK at r = 1 (4.27)

and the surface transport equation (3.15), applied on the interface between the fluids.
The O(ε) contribution to (3.15), after substituting Fick’s law for jn, the net diffusive
flux into the interface from the thread and the matrix, can be written in dimensionless
form as

∂Γ1

∂t
+
Γ0

a0

v1r + Γ0

∂v1z

∂z
− 1

NSur

∂2Γ1

∂z2
= −

(
NL

NSc

)
∂c1

∂r
+

(
NLNK

NScND

)
∂ĉ1

∂r
. (4.28)

Here, NL is the ratio of the filament radius to adsorption depth (R/K), and the
leading-order solutions for surface concentration (Γ0) and thread radius (a0) are
included in the equation for clarification, although both are unity. Recalling (3.13),
we determine that

∂c1

∂t
+ v1r +

∂v1z

∂z
− 1

NSur

∂2c1

∂z2
= −

(
NL

NSc

)
∂c1

∂r
+

(
NLNK

NScND

)
∂ĉ1

∂r
at r = 1. (4.29)

The boundary conditions (4.27) and (4.29) allow us to evaluate the constants B
and B̂, and determine the surfactant concentration. After determining the surfactant
concentration in the filament, the interfacial concentration of surfactant is found to be

Γ1 = −k
(

df

dr
− f
)(

ω +
k2

NSur

+
mNL

NSc

I1(m)

I0(m)
+
m̂NLNK

NScND
K1(m̂)

K0(m̂)

)−1

eωt sin (kz).

(4.30)
The length scale for the surfactant fluctuation diffusion into the filament, referred to
as the penetration depth, `, is

` ∼ (DγτB)1/2, (4.31)

where τB , the time scale of breakup, is (Nµ + 1)µ̂R/σ0 or R((Nρ + 1)ρ̂R/σ0)
1/2 for

low or high surface tension numbers, respectively. For many surfactants in fluids
Dγ ∼ 10−5–10−6 cm2 s−1 (Whitaker 1976; Hajiloo et al. 1987; Lin et al. 1990; Lucassen
& van den Tempel 1972), and, thus, the penetration depth is much less than the radius
of the thread in many industrial problems. In this case, m, which characterizes R/`,
is large, and I1(m)/I0(m) and K1(m̂)/K0(m̂) approach unity. (Expansions for the
modified Bessel functions can be found in Abramowitz & Stegun (1964).) Whitaker
1976 proposed a slightly different argument yielding a similar approximation for low
penetration depths. Accordingly, when the penetration depth is much less than the
radius of the thread, the interfacial concentration of surfactant can be approximated as

Γ1 =
−k (df/dr − f)

ω + k2/NSur + mNL/NSc + m̂NLNK/NScND
eωt sin (kz). (4.32)

From here on, the interfacial concentration of surfactant will be represented by this
equation to simplify the analysis and highlight the important physics of the problem;
however, a more detailed study only involves substituting (4.30) for (4.32).

Examination of (4.32) shows that diffusion into and out of the matrix phase has
roughly the same effect on the stability of the filament as diffusion into and out of the
filament phase – the main difference lying in physical constants. Thus, the problem
is essentially the same if the surfactant is only soluble in the filament or only soluble
in the matrix. We note, however, that this similarity results from the assumption that
` � R, and the absence of convection of surfactant in the bulk, which is not part
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of the O(ε) problem. In the remainder of this paper, the surfactant will be assumed
to be soluble in only the filament, i.e. NK → 0, to reduce the number of parameters.
Hence, the interfacial tension, determined by substituting (4.32) into (2.3), is

σ

σ0

= 1 + ε

(
E0

σ0

)
k

(
df

dr
− f
)
κ(ω, k)eωt sin (kz) + O(ε2), (4.33)

where

κ(ω, k) ≡ (ω + k2/NSur + mNL/NSc

)−1
(4.34)

describes the elastic nature of the interface. More complete understanding of κ(ω, k)
is obtained by noting that surface dilatational modulus and interfacial tension are
related by (Palierne & Lequeux 1991)

σ − σ0 = 1
2

∫ t

−∞
Ks(t− t′)γ̇ααdt′, (4.35)

where γ̇αα is the trace of the surface rate-of-strain tensor (Edwards et al. 1991 provides
a review of surface tensors). Evaluation of γ̇αα and further mathematical analysis shows
that

E0κ(ω, k) =

∫ ∞
0

Ks(t′)e−ωt
′
dt′ + O(ε2). (4.36)

That is, κ(ω, k) describes the response of the interface to disturbances which grow
exponentially (Palierne & Lequeux 1991). Note that as the bulk or surface diffusivity
goes to infinity, i.e. NSc or NSur → 0, the interface becomes effectively inelastic.
Equation (4.36) also demonstrates that Ks is not a material parameter, as it is
dependent upon the disturbance.

Having determined the form of the interfacial tension, we return to the remaining
boundary conditions (4.19) and (4.20), which are the shear and normal stress balances
on the interface between the fluids. To completely simplify the normal stress condition,
the pressure difference between the fluids and the kinematic condition are necessary.
The z-components of the Navier–Stokes equation for the filament (3.2) and for the
bulk (3.3) allow us to determine that

P1 − P̂1 =
1

k

[
1

Nµr

(
L̄2 + r−2 − Nµ

Nρ

ω

)
df̂

dr
− 1

r

(
L̄2 + r−2 − ω) df

dr

]
eωt sin (kz).

(4.37)
The kinematic condition on the interface, having the form, v1r = Da/Dt, can be
written to O(ε) as

ψ =
ω

k
eωt sin (kz) (4.38)

applied at r = 1. Substituting (4.11) and (4.37) into (4.19) and (4.20), and applying
(4.38) yields

1

Nµ

[
d3f̂

dr3
− d2f̂

dr2
+
(
1− 3k2

) df̂

dr
+ 2k2f̂

]

−
[

d3f

dr3
− d2f

dr2
+
(
1− 3k2

) df

dr
+ 2k2f

]
− ω

(
1

Nρ

df̂

dr
− df

dr

)

= Nσ

k2
(
1− k2

)
ω

f +NElκ(ω, k)k2

(
df

dr
− f
)

(4.39)
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for the normal stress balance, and

1

Nµ

(
df̂

dr
− d2f̂

dr2
− k2f̂

)
−
(

df

dr
− d2f

dr2
− k2f

)
= −NElκ(ω, k)k2

(
df

dr
− f
)

(4.40)

for the tangential stress balance. Here, NEl ≡ ρE0R/µ
2 is termed the elasticity number.

The left-hand sides of (4.39) and (4.40) describe the stress differences between the
fluids, and the right-hand sides are terms resulting from the interfacial tension. Using
(4.15)–(4.18) allows us to rewrite (4.39) and (4.40) in the more manageable forms

A1

[
2
(
1/Nµ − 1

)
k3I0(k)− ωkI0(k) +Nσk

2
(
1− k2

)
I1(k)/ω

]
+ A2

[
2
(
1/Nµ − 1

)
k2k1I0(k1)− ωI1(k1) +Nσk

2
(
1− k2

)
I1(k1)/ω

]
+ Â1

[−ωkK0(k)/Nρ

]
+ Â2

[
ωK1(k2)/Nρ

]
= 0 (4.41)

and

A1 {NElκ(ω, k) [kI0(k)− I1(k)]}+ A2 {ωI1(k1)

+NElκ(ω, k) [k1I0(k1)− I1(k1)]}+ Â1

[−2
(
1/Nµ − 1

)
k2K1(k)

]
+ Â2

[−2
(
1/Nµ − 1

)
k2K1(k2)− ωK1(k2)/Nρ

]
= 0. (4.42)

Equations (4.17), (4.18), (4.41) and (4.42) define a system of linear homogeneous
equations. Thus, there is a non-trivial solution for this capillary wave growth problem
if and only if the determinant of the 4× 4 matrix composed of the coefficients of A1,
A2, Â1 and Â2 in the aforementioned four homogeneous equations equals zero. We
determine that the dispersion relation for these capillary waves is

ω2{G(k)M(k1, k)/N
2
ρ + [F(k)F(k1) + G(k)G(k2) + 2F(k)G(k)] /Nρ

+ F(k)O(k2, k)}+ 2
(
1/Nµ − 1

)
ωk2{ [1− 2F(k)]O(k2, k)

+ [1 + 2G(k)]M(k1, k)/Nρ} − 4
(
1/Nµ − 1

)2
k4M(k1, k)O(k2, k)

+NElκ(ω, k)k2{ω [1 + F(k)F(k1)− 2F(k)]O(k2, k)

+ ω [1 + G(k)G(k2) + 2G(k)]M(k1, k)/Nρ

− 2
(
1/Nµ − 1

)
k2M(k1, k)O(k2, k)} = Nσk

2
(
1− k2

) {O(k2, k)

+M(k1, k)/Nρ +NElκ(ω, k)k2M(k1, k)O(k2, k)/ω} (4.43)

in which

M(k1, k) = F(k1)− F(k) and F(k) = kI0(k)/I1(k), (4.44)

O(k2, k) = G(k2)− G(k) and G(k) = kK0(k)/K1(k). (4.45)

Equation (4.43) relates the initial growth rate, ω, to the wavenumber, k, of the Fourier
component of a disturbance to the interface. Components with a negative growth rate
decay, while those with a positive growth rate grow. The maximum (or fastest) growth
rate and the wavelength of the maximum growth rate, termed the dominant growth
rate and dominant wavelength, respectively, are frequently used to characterize the
breakup of a filament.
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5. Results and discussion
We validate the dispersion relation (4.43) by comparison with other limiting forms.

The limiting case of the Stokes problem, or negligible inertia terms, with Nσ (and
NσN

2
µ/Nρ, which characterizes the Reynolds number in the matrix) approaching zero,

can be solved with the same approach as used in § 4 for the full Navier–Stokes
equation. The analysis, which is omitted, shows that the dispersion relation for the
Stokes problem is similar to the dispersion relation from Palierne & Lequeux (1991),
which assumes that the interface has dilatational and shear moduli – the forms of
the moduli are left undetermined. The two relations are the same if the surface
dilatational modulus in Palierne & Lequeux (1991) is defined such that (4.36) holds,
and the surface shear modulus is zero.

Alternatively, the dispersion relation for Stokes flow can be derived from (4.43)
with an approach similar to that of Tomotika (1935). Noting that in the Stokes limit
ω ∼ Nσ , we expand F(k1) and G(k2) into Taylor series:

F(k1) ≈ F(k) +
F ′(k)
2k

ω + · · · (5.1)

and

G(k2) ≈ G(k) +
G′(k)

2k

Nµ

Nρ

ω + · · · . (5.2)

Substituting (5.1) and (5.2) into (4.43) and neglecting terms higher than O(ω) yields

ωs

{
1

Nµ

(
1− 1

Nµ

)[
G2(k)− 1− k2

]
kF ′(k) +

(
1− 1

Nµ

)[
F2(k)− 1− k2

]
kG′(k)

+
1

Nµ

[G(k) + F(k)]2 +

(
E0

σ0

)
κs(ωs, k)

2

(
1 + k2

) [
kG′(k) +

1

Nµ

kF ′(k)
]}

=

(
1− k2

)
2

[
kG′(k) +

1

Nµ

kF ′(k) +

(
E0

σ0

)
κs(ωs, k)

2
kG′(k)kF ′(k)

]
, (5.3)

where

ωs ≡ ω/Nσ as Nσ → 0, (5.4)

κ(ωs, k) ≡
(
ωs +

k2

NSurNσ

+
NL

NScNσ

(k2 +NScNσωs)
1/2

)−1

, (5.5)

kF ′(k) = k2 − F2(k) + 2F(k) (5.6)

and

kG′(k) = G2(k)− k2 + 2G(k). (5.7)

This dispersion relation is identical to that derived by starting from the Stokes equa-
tions. We note that it is not uniformly valid in k, because inertia terms become
important as k2 becomes small, on the order of Nσ (or NσN

2
µ/Nρ). In most circum-

stances, the error in (5.3) is inconsequential, because both ωs (from (5.3)) and ω/Nσ

(from (4.43) with Nσ → 0) approach zero as k → 0; two possible exceptions, both
with non-zero ωs at k = 0, are threads with Nµ = 0 and Nµ → ∞ without interfacial
elasticity. Examination of these two cases in the limit of small wavenumbers shows
that the Stokes dispersion relation for NEl = 0 is uniformly valid for Nµ = 0, but it
breaks down for Nµ → ∞ when k2 ∼ Nσ . Figure 2 compares the growth rate for a
surfactant-free thread with Nµ → ∞ determined from the Stokes dispersion relation
(5.3) with that determined from the full dispersion relation (4.43). Further study of
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Figure 2. Dimensionless growth rate ω/Nσ , versus dimensionless wavenumber, k, for
Nρ and Nµ → ∞ and NEl = 0. The solid line represents ω/Nσ from (4.43) with Nσ = 10−6,
while the dashed line represents ωs, from (5.3). The Stokes solution for ωs breaks down when
k2 ∼ Nσ .

the two dispersion relations at intermediate values of Nµ, and NEl ranging from 0
to infinity, reveals that the difference between the two relationships decreases as Nµ

decreases and/or NEl increases. As Palierne & Lequeux (1991) did not determine the
dilatational modulus for surfactant-rich interfaces and only considered the response
of a surface dilatational modulus described by a Newtonian viscosity, we show the
stability of a thread predicted by (5.3), i.e. both Nσ and NσN

2
µ/Nρ approaching zero,

for different elasticities and diffusivities in figure 3.
Marangoni effects resulting from gradients in surfactant concentration damp the

growth rate of disturbances to a thread. Figure 3(a) shows that the dimensionless
growth rate decreases as the elasticity number, NEl , which characterizes the importance
of surfactant, increases. The dominant wavelength is also influenced by surfactant
(see figure 3b). In most cases, the dominant wavenumber increases with NEl . However,
for a narrow band of viscosity ratios, ranging from about 0.03 to 0.4, the dominant
wavenumber decreases as NEl increases – the effect however is relatively minor. Also,
the influence of surfactant is greatest when the viscosity ratio is very high or very low.
These results differ from those of Milliken et al. (1993) which show that the average
length of a disturbance, for Nµ = 1, is larger when surfactant is present. There are
a couple of explanations for this difference. First, Milliken et al. (1993) consider the
breakup of droplets in which the concentration of surfactant in the interface before
the disturbance begins to grow is non-uniform. Second, since Milliken et al. (1993)
study the breakup of long slender droplets without disturbances on the interface, the
breakup in their work might be dominated by end effects; their simulations show
breakup starting at the ends of the drops and proceeding towards the centres.

Diffusivity of the surfactant relaxes the surface elasticity of the thread (see
figure 3c–f). The elasticity of the interface results from the tendency of the sur-
factant to return to a uniform distribution across the interface. If diffusivity is high
the distribution of the surfactant remains nearly uniform, and the effective elasticity
of the interface decreases. That is, as NSc or NSur → 0 the interface behaves like a
‘clean’ interface with an interfacial tension of σ0. Here, we note that it is more accu-
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Figure 3. Dominant dimensionless growth rate and dimensionless wavenumber versus viscosity
ratios for Stokes flow (Nσ and NσN

2
µ/Nρ → 0), and various Gibbs elasticities and diffusivities. The

density ratio does not influence the Stokes problem. The dimensionless growth rate is plotted as
ωs(1 + Nµ)/Nµ to scale the problem with the higher of the two viscosities. (a) Dominant growth
rate for NL = 0 and NSur → ∞. The solid, dashed and dotted lines are for NEl/Nσ = 0, 1, and 103,
respectively. (b) The dominant wavenumber for the same parameters as in (a). (c) Dominant
growth rate for NL = 1, NSur → ∞ and NEl/Nσ = 10. The solid, dashed and dotted lines are
for NScNσNµ/(1 + Nµ) = 10, 1, and 0.1, respectively. (d) The dominant wavenumber for the same
parameters as in (c). (e) Dominant growth rate for NL = 0 and NEl/Nσ = 10. The solid, dashed and
dotted lines are for NSurNσNµ/(1+Nµ) = 10, 1, and 0.1, respectively. (f) The dominant wavenumber
for the same parameters as in (e).
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rate to describe interfacial tension with equation (4.30) when the Schmidt number is
low, but equation (4.32) qualitatively captures the behaviour. The difference between
the effect of surface diffusion and bulk diffusion on the stability of a thread can be
seen in figure 3(c–f). Two parameters, NL and NSc, characterize the diffusion of the
surfactant in the bulk, while there is only one parameter for surface diffusion, NSur . A
low NL implies the surfactant is preferentially positioned on the interface. Generally,
NSur ∼ NSc, and the importance of bulk diffusion increases and decreases with NL.
However, relaxation of the interface due to surface diffusion scales with k2/NSur and is
less important for unstable disturbances which possess low wavenumbers. Hence, we
expect that diffusion in the bulk is more important than surface diffusion. As shown
in figure 3(c–f), surface diffusion is frequently less important than bulk diffusion, but
can play an important role when NL → 0. According to the Frumkin isotherm (Lin
et al. 1990), NL is small for dilute surfactant concentrations; however, NEl is also
relatively small at dilute concentrations.

The preceding discussion focuses on Stokes flow – low Nσ . Here, we consider sys-
tems with inertia, or moderate to high values of Nσ . The limiting case of a filament
with a non-zero Nσ in a gas was considered by Whitaker (1976). We cannot directly
compare our dispersion relation with that of Whitaker owing to the previously men-
tioned sign error. However, we can correct the sign error and compare this modified
result for a liquid filament in a gas with our result for Nρ and Nµ→∞. This exer-
cise shows that equation (4.43) agrees with the modified result of Whitaker, further
validating our dispersion relation.

Examination of the dispersion relation (4.43) reveals some of the behaviour of the
filament. Like in Tomotika’s (1935) classic problem without surfactant, threads are
unstable for λ > 2πR, and stable for λ < 2πR. The dispersion relation can be written,
for the limiting case of NEl → 0, as

ω2{G(k)M(k1, k)/N
2
ρ + [F(k)F(k1) + G(k)G(k2) + 2F(k)G(k)] /Nρ

+ F(k)O(k2, k)}+ 2
(
1/Nµ − 1

)
ωk2{ [1− 2F(k)]O(k2, k)

+ [1 + 2G(k)]M(k1, k)/Nρ} − 4
(
1/Nµ − 1

)2
k4M(k1, k)O(k2, k)

= Nσk
2
(
1− k2

) {O(k2, k) +M(k1, k)/Nρ} (5.8)

and, for the limiting case of NEl →∞, as

ω2{ [1 + F(k)F(k1)− 2F(k)]O(k2, k) + [1 + G(k)G(k2) + 2G(k)]M(k1, k)/Nρ}
−2ω

(
1/Nµ − 1

)
k2M(k1, k)O(k2, k) = Nσk

2
(
1− k2

)
M(k1, k)O(k2, k). (5.9)

When NEl → 0, the thread is essentially surfactant free. On the other hand, when
NEl → ∞, the tangential stress condition (4.20) becomes ∂Γ1/∂z = 0. Physically, the
surface elasticity due to Marangoni effects is so strong that the O(ε) part of the
fractional rate of surface expansion, ∇s · v1 at r = 1, equals zero. This is possible
because the total surface area of the filament remains constant in the O(ε) problem.
Higher-order contributions to the fractional rate of surface expansion are not zero.
The tangential stress boundary condition can be expressed as

∂v1z

∂z
+ v1r = 0 at r = 1 (5.10)

and the last term in the normal stress boundary condition (4.19) drops out, because
σ1 is zero. Thus, as postulated by Whitaker (1976) for a viscous filament in a gas, in
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Figure 4. Dimensionless growth rate, ω/NRe, versus dimensionless wavenumber, k, for the dispersion
relation in the limits of NEl → 0 and ∞, with Nρ = Nµ = 1. The dotted, dashed and solid lines show
the growth rates for Nσ = 1, 100, and 106, respectively. The faster growth rates are for NEl → 0, or
(5.8), and the slower growth rates are for NEl → ∞, or (5.9). Note that the two limiting forms for
Nσ = 106 match to within six significant figures, and thus the two solid lines completely overlap.

the two limiting cases for NEl the stability of the thread becomes independent of the
Gibbs elasticity.

Figure 4 shows the behaviour of the two limiting cases of NEl . We note that
as Nσ → 0 the growth rate becomes proportional to interfacial tension, and that
as Nσ → ∞ the growth rate becomes proportional to the square root of interfacial
tension. Therefore, we plot ω/NRe. Threads with a high elasticity are more stable than
threads with no elasticity, i.e. ω decreases as NEl increases. However, the difference
between the limiting forms, (5.8) and (5.9), decreases as the surface tension number
increases. In fact, as shown in figure 4, the dilatational elasticity of the surface does
not affect the stability of the interface when Nσ →∞. This behaviour for threads with
high surface tension numbers, illustrated in figure 4, holds for all other investigated
values of Nµ and Nρ, provided that NσN

2
µ/Nρ � 1.

When the dimensionless groups Nσ and (NσN
2
µ/Nρ) become very large, the sys-

tem is practically inviscid. In the inviscid system with surfactant, a disturbance in
tangential velocity on the surface of the filament, resulting from Marangoni effects
and undamped by viscous terms, immediately corrects for concentration gradients
which would normally prevail due to the local stretching and contraction of the in-
terface during breakup. As a result, surfactant concentration remains uniform during
breakup. Furthermore, the disturbance to the surface tangential velocity does not
propagate into the inviscid fluids. Thus, surfactants only influence the stability of
inviscid systems by lowering σ0; dilatational surface elasticity does not affect inviscid
systems.

In most cases, surfactants tend to shorten the dominant wavelength. However, as
shown in figure 3 for the Stokes problem, this behaviour is not universal. Figure 5
shows the effect of increasing NEl on the dominant wavenumber for a moderate Nσ

and Nµ, and a range of Nρ. For this case and Nρ > 10−2, the dominant wavenumber
first decreases then increases as NEl increases from zero to infinity.
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Figure 5. Dominant wavenumber versus dimensionless density ratio, Nρ, for Nσ = 10, Nµ = 10,
NL = 0 and NSur →∞. The solid, dashed and dotted lines are for NEl = 0, 1, and 106, respectively.
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Figure 6. Dimensionless growth rate, ω/NRe, versus dimensionless wavenumber, k, for
Nσ = NEl = 10, Nµ = Nρ = 1, NL = 1 and NSur → ∞. The solid, dashed and dotted lines
are for NSc = 1, 0.1, and 0.01, respectively.

Figure 6 shows the growth rate of disturbances on threads with an intermediate
surface tension number and an intermediate elasticity number for various Schmidt
numbers. The growth rate is bound by the limiting cases of no surfactant and
a surfactant which does not diffuse. We caution however that while growth rate
versus wavenumber is bound by the limiting cases the dominant wavenumber is
not necessarily bound by the limiting forms. Nevertheless, figure 6 shows that one
need not know diffusivity and adsorption depth to predict some of the effects of the
surfactant.
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6. Conclusion
We have determined the dispersion relation for a viscous fluid filament embedded in

another viscous fluid with surfactant via linear stability theory. The surfactant, which
only serves to lower interfacial tension, diffuses in the filament and the matrix, and in
the fluid–fluid interface. To obtain the solution, which is valid for small disturbances,
we have assumed that the system is initially in equilibrium.

Several parameters influence the stability of the thread (see the table of dimension-
less parameters in § 3). As expected, the analysis shows that surfactants stabilize a
filament by lowering the interfacial tension, and by giving the interface a dilatational
modulus. The surface elasticity resulting from Marangoni effects is not a material
parameter, and is dependent on Gibbs elasticity, diffusion in the bulk fluids and in-
terface, adsorption depth, and the disturbance. As expected, diffusion in the interface
and in the bulk relax the elastic nature of the interface. Surface diffusivity is less
important than bulk diffusivity, except at low surfactant concentrations, low NL.

The influence of surfactant on the dominant wavelength is less intuitive. Most often,
the dominant wavelength decreases with increasing Gibbs elasticity. This indicates that
droplets resulting from breakup of a filament are smaller when surfactant is present.
However, in the Stokes regime, for a small range of viscosity ratios (Nµ ∼ 0.03–0.4) the
dominant wavelength increases with Gibbs elasticity. Systems with moderate surface
tension numbers exhibit similar behaviour. In dispersions, surfactants are used to
control the size of the droplets by their influence on stretching and deformation of
droplets, and on coalescence. Our results demonstrate that surfactants also affect
the size of droplets resulting from breakup; however, the effect of surfactants is less
important for viscosity ratios between 0.1 and 3 – which includes many practical
systems – than for more extreme viscosity ratios.

Furthermore, two interesting conclusions can be drawn by examining the limiting
forms of the dispersion relation. The behaviour of a filament with NEl → 0 and
that of a filament with NEl → ∞ are both independent of the Gibbs elasticity. More
interesting, the stability of a filament is not affected by surfactant when the surface
tension number is very large.

This work was supported by the European Commission within the FAIR Project
CT97 3022.
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